General Specifications

Recorder

GS 04P02B01－01E

The μ R20000 is a compact recorder with a recording width of 180 mm ．The model family consists of 1，2， 3， 4 pen and a 6，12，18， 24 dot models．Pen model realizes continuous recording for each channel， whereas the dot model realizes a high speed of 6 dot ／ $10 \mathrm{sec}, 12$ dot／ $15 \mathrm{sec}, 18$ dot／ $20 \mathrm{sec}, 24$ dot／ 30 sec．The input is universal input．High reliability is realized by contact－free technology，such as high withstand voltage semiconductor relays，and pen servo unit using an ultra－small stepping motor．The versatile display such as multi－channel digital display， bar graph display，flag display，DI／DO status display， and date／time display are provided with 181×16 VFD dot display．
On models with the SD memory card（／EM1）option， measured data can be saved to an SD memory card while recording on chart paper．Further，on dot models，saved data can be replayed on chart paper．
The $\mu R 20000$ can be used as a monitoring device and as a quality control instrument in many applications （such as process temperature monitoring，pollution， construction，furnaces，field of medical diagnosis，field of refrigerating，etc．）．

The measuring accuracies noted in the general specifications have a margin of error that takes into account the product＇s components and the equipment used for adjustment and testing．However，the actual values calculated from the accuracy testing data upon shipment of the instrument from the factory are as follows．

Input		Measuring Range ${ }^{* 1}$（typical value）
DCV	20 mV	0.06 \％of rdg＋ 1 digit
	60 mV	0.03% of rdg＋ 1 digit
	6 V	0.03 \％of rdg＋ 1 digit
TC＊${ }^{2}$	R	$\begin{aligned} & 300 \text { to } 1760^{\circ} \mathrm{C}: 0.06 \% \text { of rdg }+1.1^{\circ} \mathrm{C} \\ & 0 \text { to } 300^{\circ} \mathrm{C}: \pm 1.5^{\circ} \mathrm{C} \end{aligned}$
	K	$\begin{array}{\|l} 0 \text { to } 1370^{\circ} \mathrm{C}: 0.06 \% \text { of rdg }+0.5^{\circ} \mathrm{C} \\ -200 \text { to } 0^{\circ} \mathrm{C}: 0.1 \% \text { of rdg }+0.5^{\circ} \mathrm{C} \\ \hline \end{array}$
	J	$\begin{aligned} & 0 \text { to } 1100{ }^{\circ} \mathrm{C}: ~ 0.05 \% \text { of rdg }+0.4^{\circ} \mathrm{C} \\ & -200 \text { to } 0^{\circ} \mathrm{C}: 0.15 \% \text { of rdg }+0.4^{\circ} \mathrm{C} \end{aligned}$
	T	$\begin{aligned} & 0 \text { to } 400{ }^{\circ} \mathrm{C}: 0.05 \% \text { of rdg }+0.4^{\circ} \mathrm{C} \\ & -100 \text { to } 0^{\circ} \mathrm{C}: 0.15 \% \text { of rdg }+0.4^{\circ} \mathrm{C} \\ & -200 \text { to }-100{ }^{\circ} \mathrm{C}: 0.15 \% \text { of rdg }+0.5^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
	N	$\begin{aligned} & 0 \text { to } 1300{ }^{\circ} \mathrm{C}: 0.05 \% \text { of rdg }+0.5^{\circ} \mathrm{C} \\ & -200 \text { to } 0^{\circ} \mathrm{C}: 0.3 \% \text { of rdg }+0.5^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
RTD	Pt100	0.04 \％of rdg $+0.2{ }^{\circ} \mathrm{C}$

＊1：General operating conditions： $23 \pm 2^{\circ} \mathrm{C}, 55 \pm 10 \%$ RH，supply voltage 90－132，180－264 VAC， supply frequency within $50 / 60 \mathrm{~Hz} \pm 1 \%$ ，warm－ up of 30 minutes or more，no vibrations or other hindrances to performance．
＊2：These values do not include the reference junction compensation accuracy．

μ R20000
（24 dot model）

STANDARD SPECIFICATIONS

General Specifications

Construction

Mounting：
Flush Panel Mounting（vertical）．
Mounting may be inclined up to 30° ，rear below front（with horizontal base）．
Allowable panel thickness： 2 to 26 mm
Material：
Case：Steel，front door：aluminium die casting．
Case color：
Case and door－frame：Charcoal gray light
（Mansell 10B 3.6 ／ 0.3 or
equivalent）
Door：Splash and dust－proof（based on DIN 40050－ IP54）．
Dimensions：
$288 \times 288 \times 220 \mathrm{~mm}$（see dimensional drawings）
Weight（approx．）

1 pen	7.8 kg	6 dot	8.4 kg
2 pen	7.8 kg	12 dot	8.6 kg
3 pen	7.9 kg	18 dot	8.8 kg
4 pen	7.9 kg	24 dot	9.0 kg

Mode

1，2，3，and 4 pen，6，12，18， 24 dot－model．
Input
Inputs：DCV：Direct Current Voltage input 20 mV to $50 \mathrm{~V}, 1-5 \mathrm{~V}$ range．
TC：Thermo couple．
RTD：Resistance Temperature Detector．
DI：Digital Input（contact or DC Voltage， TTL level）．
DCA：Direct Current Input（using external shunt resistor（ $10 \Omega, 100 \Omega, 250 \Omega$ ））
rdg：reading value．
Measuring range: selectable per channel

Input Type	Range	Measuring Range
	20 mV	-20.00 to 20.00 mV
	60 mV	-60.00 to 60.00 mV
	200 mV	-200.0 to 200.0 mV
	2 V	-2.000 to 2.000 V
	6 V	-6.000 to 6.000 V
	20 V	-20.00 to 20.00 V
	50 V	-50.00 to 50.00 V
	$1-5 \mathrm{~V} * 1$	1.000 to 5.000 V

*1: Only linear scaling can be used (burnout is available)

Input	Range	Measuring Range ${ }^{\circ} \mathrm{C}$	Measuring Range ${ }^{\circ} \mathrm{F}$
TC	R*2	0.0 to $1760.0^{\circ} \mathrm{C}$	32 to $3200^{\circ} \mathrm{F}$
	S*2	0.0 to $1760.0^{\circ} \mathrm{C}$	32 to $3200^{\circ} \mathrm{F}$
	B*2	0.0 to $1820.0^{\circ} \mathrm{C}$	32 to $3308^{\circ} \mathrm{F}$
	K*2	-200.0 to $1370.0^{\circ} \mathrm{C}$	-328 to $2498^{\circ} \mathrm{F}$
	E*2	-200.0 to $800.0^{\circ} \mathrm{C}$	-328.0 to $1472.0^{\circ} \mathrm{F}$
	J*2	-200.0 to $1100.0^{\circ} \mathrm{C}$	-328.0 to $2012.0^{\circ} \mathrm{F}$
	T*2	-200.0 to $400.0^{\circ} \mathrm{C}$	-328.0 to $752.0^{\circ} \mathrm{F}$
	N*2	0.0 to $1300.0^{\circ} \mathrm{C}$	32 to $2372^{\circ} \mathrm{F}$
	W*3	0.0 to $2315.0^{\circ} \mathrm{C}$	32 to $4199^{\circ} \mathrm{F}$
	L*4	-200.0 to $900.0^{\circ} \mathrm{C}$	-328.0 to $1652.0^{\circ} \mathrm{F}$
	U*4	-200.0 to $400.0^{\circ} \mathrm{C}$	-328.9 to $752.0^{\circ} \mathrm{F}$
	WRe*5	0.0 to $2400.0^{\circ} \mathrm{C}$	32 to $4352^{\circ} \mathrm{F}$
RTD*6	Pt100*6	-200.0 to $600.0^{\circ} \mathrm{C}$	-328.0 to $1112.0^{\circ} \mathrm{F}$
	JPt100*6	-200.0 to $550.0^{\circ} \mathrm{C}$	-328.0 to $1022.0^{\circ} \mathrm{F}$
DI	$\begin{aligned} & \hline \text { DCV } \\ & \text { input } \end{aligned}$	OFF: 2.4V less $\mathrm{ON}: 2.4 \mathrm{~V}$ or greater	
	Contact input	Contact input ON/OFF	

*2: R, S, B, K, E, J, T, N: IEC 60584-1, DIN EN 60584-1, JIS C1602
*3: W: W-5\% Re/W-26\% Re(Hoskins Mfg. Co.), ASTM E988-96
(Type C equivalent of OMEGA Engineering Inc.)
*4: L: Fe-CuNi, DIN43710, U: Cu-CuNi, DIN43710
*5: WRe: W-3\% Re/W-25\% Re(Hoskins Mfg. Co.), ASTM E988-96
(Type D equivalent of OMEGA Engineering Inc.)
*6: Pt100: JIS C 1604, IEC 60751, DIN EN 60751
JPt100: JIS C1604, JIS C1606
Measuring current: $i=1 \mathrm{~mA}$
Measurement Interval:
Pen model: 125 ms / channel
Dot printing model: $1 \mathrm{~s} / 6$ dot, $2.5 \mathrm{~s} / 12-24$ dot $2.5 \mathrm{~s} / 6$ dot, $5 \mathrm{~s} / 12$ dot, $10 \mathrm{~s} /$ 18-24 dot (AD integration time is 100 ms)
A/D Integration Time:
AUTO / FIX selectable
AUTO: $\quad 20 \mathrm{~ms}(50 \mathrm{~Hz})$ or $16.7 \mathrm{~ms}(60 \mathrm{~Hz})$, automatically selected depending on the power supply frequency.
FIX: $\quad 20 \mathrm{~ms}(50 \mathrm{~Hz}), 16.7 \mathrm{~ms}(60 \mathrm{~Hz})$ or $100 \mathrm{~ms}(50 / 60 \mathrm{~Hz})^{* 1}$ can be selected.
*1 100ms integration time: only for dot printing model (not available for $1 \mathrm{~s} / 6$ dot measure-ment interval)
TC Burnout:
ON / OFF selectable (per channel).
Burnout upscale / downscale selectable (per channel)
Normal: less than $2 k \Omega$, burnout: more than $10 \mathrm{M} \Omega$.
Measuring current: approx. $10 \mu \mathrm{~A}$.

1-5V Burnout:
Burnout: less than 0.2V
Filter:
Pen model:
Signal damping: ON / OFF selectable per channel
Time constant : 2, 5, 10sec
Dot printing model:
Moving average: ON / OFF selectable per channel
Moving average cycle: 2 to 16
Computation:
Differential computation:
Between any two channels, however reference channel number must be smaller than measuring channel number.
Available for DCV, TC, and RTD range.
Both channels must have same range.
Linear scaling:
Available for DCV, TC , RTD and DI range.
Scaling range:
-20000 to 30000
Data display \& printout range:-19999 to 30000
Decimal point: User selectable
Unit: User settable, up to 6 characters
(alphanumerical \& special characters).
Square root:
Available for DCV range.
Scaling range: $\quad-20000$ to 30000
Data display \& printout range:-19999 to 30000
Decimal point: User selectable
Unit: User settable, up to 6 characters
(alphanumerical \& special characters).
Low level cut off: 0.0 to 5.0% of recording span Bias addition: -10.0 to 10.0% of recording span

Recording and Printing

Recording Method:
Pen model: Disposable felt pens, Plotter pen
Dot printing model: 6 color wire dot.
Pen Offset Compensation:
ON / OFF selectable (Pen model only)
Effective Recording Width: 180mm
Chart:
Plain-paper Z-fold chart (20m)
Step Response Time (pen):
Approx. 1.5s /IEC 61143 method
Recording Period:
Pen model:
Continuous for each channel.
Dot printing model*:
Max. 6 channel / 10 sec(the shortest record-
ing period)
7 to 12 channels / $15 \sec ($ the shortest
recording period)
13 to 18 channels / $20 \mathrm{sec}($ the shortest
recording period)
19 to 24 channels / $30 \mathrm{sec}($ the shortest recording period)
25 to 48 channels / $60 \mathrm{sec}($ the shortest recording period)

* The model with /M1 option includes analog recording of mathematical channel.
AUTO / FIX selectable
AUTO: Analog recording interval is depending on the chart speed
FIX: Analog recording interval is set to the shortest period

Chart Speed:

Pen model: $\quad 5$ to $12000 \mathrm{~mm} / \mathrm{h}$
(82 increments)
Dot printing model: 1 to $1500 \mathrm{~mm} / \mathrm{h}$ (1 mm step)
Chart Speed Change:
Speed 1, speed 2 change by remote control signals (option)
Chart Speed Accuracy:
Within $\pm 0.1 \%$ (for recordings longer than 1000 mm , related to the grid of the chart paper)

Relation between Chart Speed and Printout:

(Pen-model)		
Chart Speed	-Periodic Printout	-Alarm Printout - Message Printout -Chart Speed Change Time Printout
5 to $9 \mathrm{~mm} / \mathrm{h}$	NA	Available
10 to $1500 \mathrm{~mm} / \mathrm{h}$	Available	Available
1600 to $12000 \mathrm{~mm} / \mathrm{h}$	NA	NA

(6,12 dot model)

Chart Speed	-Channel No. or Tag No.	Periodic Printout	-Alarm Printout -Message Printout -Chart Speed Change Time Printout
1 to $9 \mathrm{~mm} / \mathrm{h}$ 10 to $100 \mathrm{~mm} / \mathrm{h}$ 101 to $1500 \mathrm{~mm} / \mathrm{h}$	Available Available NA	NA Available NA	Available Available NA

(18,24 dot model)

Chart Speed	-Channel No. or Tag No.	-Periodic Printout	Alarm Printout Message Printout -Chart Speed Change Time Printout
1 to 10 to $50 \mathrm{~mm} / \mathrm{h} / \mathrm{h}$ 51 to $1500 \mathrm{~mm} / \mathrm{h}$	Available Available NA	NA Available NA	Available Available NA

Relation between chart speed and printing intervals of periodic printouts (For AUTO interval setting):

(Pen-model)	
Chart Speed	Printing Interval of Periodic Printout
5 to $\quad 9 \mathrm{~mm} / \mathrm{h}$	NA
10 to $18 \mathrm{~mm} / \mathrm{h}$	Every 8 hours
20 to $36 \mathrm{~mm} / \mathrm{h}$	Every 4 hours
40 to $72 \mathrm{~mm} / \mathrm{h}$	Every 2 hours
75 to $135 \mathrm{~mm} / \mathrm{h}$	Every hour
150 to $180 \mathrm{~mm} / \mathrm{h}$	Every 30 minutes
200 to $320 \mathrm{~mm} / \mathrm{h}$	Every 20 minutes
360 to $1500 \mathrm{~mm} / \mathrm{h}$	Every 10 minutes
more than $1600 \mathrm{~mm} / \mathrm{h}$	NA

(Dot model)

Chart Speed	Printing Interval of Periodic Printout				
	$\mathbf{6}$ dot		$\mathbf{1 2}$ dot	$\mathbf{1 8}$ dot	$\mathbf{2 4}$ dot
1 to	$9 \mathrm{~mm} / \mathrm{h}$	NA	NA	NA	NA
10 to	$19 \mathrm{~mm} / \mathrm{h}$	8 hours	12 hours	12 hours	24 hours
20 to	$39 \mathrm{~mm} / \mathrm{h}$	4 hours	8 hours	8 hours	12 hours
40 to	$50 \mathrm{~mm} / \mathrm{h}$	2 hours	4 hours	4 hours	8 hours
51 to	$79 \mathrm{~mm} / \mathrm{h}$	2 hours	4 hours	NA	NA
80 to $100 \mathrm{~mm} / \mathrm{h}$	1 hour	2 hours	NA	NA	
101 to $1500 \mathrm{~mm} / \mathrm{h}$	NA	NA	NA	NA	

Recording Colors:
Pen model:
1 pen=red, 2 pen=green, 3 pen=blue,
4pen=violet, plotter pen=purple
Dot model:
ch. 1,7,13,19=purple, ch.2,8,14,20=red,
ch. $3,9,15,21=$ green, ch. $4,10,16,22=$ blue, ch. $5,11,17,23=$ brown, ch. $6,12,18,24=$ black (color can be assigned to any channels)
Recording Format:

1. Analog recording:

Analog recording ON/OFF selectable for each channel of dot model
Zone recording:
Span: 5 mm or more (1 mm step)
Partial expanded recording:
Boundary position: 1 to 99%
Boundary value: Within recording span
2. Digital printout:

Channel (dot model only):
Channel number or TAG will be printed during analog recording. Approx. every 25 mm this print will occur. ON / OFF selectable (common for all channels)
Alarm:
At the right side of the chart, CH . No. or TAG, Type of alarm, (date*4/time)*2 of alarm ON / OFF will be printed. Time of alarm ON / OFF, time of alarm ON, OFF selectable (common for all channels).
Periodic printout contents:
Date (mm/dd/yy)*4, time(hh:mm), measurement data of each channel, scale printout, recording color, chart speed

- Measurement data of each channel:
a. ON/OFF selectable
b. Channel No. or tag, alarm status (for instantaneous mode), measuring value (according to instantaneous mode or report mode), measuring unit (up to 6 characters)
- Scale printout:
a. ON/OFF selectable (common for all channels)
b. 0 and 100% scale value (when using partial expanded recording, boundary value is recorded)
c. Printout available for recording span of 40 mm or more
- Recording color:

Only for pen model (OFF selectable)

- Periodic print interval:
a. Using internal timer
b. Standard time 00:00 to 23:00 (on the hour)
c. Print interval setting (AUTO/MAN)*5

AUTO: Automatically set as chart speed
MAN: 10, 12, 15, 20, 30 minute, 1, 2, $3,4,6,8,12,24$ hour

- Periodic printout mode:

Selectable from Instantaneous value mode / report mode/OFF mode
a. Instantaneous value mode:

Measuring value for each channel
b. Report mode: Selectable from MIN,

MAX, AVE, MIX(MIN/MAX/AVE), SUM, INST
Report interval: Same as periodic printout interval
c. OFF mode: Periodic printout is not executed.
Message printout:
With panel key or remote control option, up to 5 messages can be printed. Contents: (Date*/time) ${ }^{* 1}$ and message (up to 16 characters).
Record start time:
(Date*4/time)*2 will be printed when recording starts, ON / OFF selectable.
Chart speed printout:
(Date*4/time)*2 when chart speed is changed will be printed, ON / OFF selectable.
List printout*3:
Listings of range and alarm setting, etc. will be printed.
Manual printout*3:
With panel key or remote control option, measuring value will be printed.
SET UP List printout*3:
Listings of settings in SET UP Mode will be printed.
*1 Selectable from hh:mm, hh:mm:ss, mm/ dd hh:mm, mm/dd hh:mm:ss, mm/dd/yy hh:mm:ss, OFF.
*2 Selectable from hh:mm, hh:mm:ss, mm/dd hh:mm, mm/dd hh:mm:ss, mm/dd/yy hh:mm:ss
*3 During printout trend recording will be interrupted.
*4 Selectable from $\mathrm{mm} . d d . y y, ~ y y / m m / d d, ~ m m / d d /$ yy, dd/mm/yy or dd.mm.yy
*5 According to print settings all the items are not printed.

Display

Display Method: VFD 181×16 dot matrix
15 display screens can be selected from the any of followings (default display is 6 screens)

- 1 channel digital display*1,*4: AUTO*2/MAN*3
-2 channel digital display*1,*4: AUTO*2/MAN*3
- 3 channel digital display*4,*5: AUTO*2/MAN*3
- 4 channel digital display*4: Channel No., alarm type, measuring value, with measuring unit (3digits)*6 are displayed
- 6 channel digital display*4: Channel No., alarm type, measuring value are displayed (only for dot model)
- 12 channel digital display*4: measuring value are displayed (only for 12, 18, 24 dot model)
-1 channel digital display* ${ }^{*}+1$ channel bar graph display: AUTO*2/MAN*3
- 1 channel digital display*4 + 4 channel bar graph display (only for pen model): AUTO*2/MAN*3
- 2 channel digita|*4 +2 channel bar graph display: AUTO*2/MAN*3
- 4 channel bar graph display (only for 4 pen model)
- Flag display
- DI/DO display (Available for model with /R1 or /A1, /A2, /A3, /A4, /A5 option)
- Alarm status*1
- Date/time display (mm/dd/yy hh:mm)+Chart speed display*1
- Status display*1
- System display
- Display Off (light out)*1
- Split display: Upper/lower position display
- Tag 1 channel digital display*1,*4: AUTO*2/MAN*3
- Tag 2 channel digital display*4: AUTO*2/MAN*3
- Tag 1 channel digital display*4 +1 channel bar graph display: AUTO*2/MAN*3
- Tag 1 channel digital display + 4 channel bar graph display*4 (4 pen model only)
- Batch name....For the model with /BT1 option
- SD card status display....When the /EM1 option is installed
Status display:
Recording in progress (RECORD)
Shared alarm display (ALARM)
Alarm occurrence No. display (1 to 24)
Computation in progress(MATH).......For the model with /M1 option
Key lock display (KEY LOCK)
*1 The displays can be specified for split display.
*2 AUTO: Channel No., alarm type, measuring value, and measuring unit (6 digits) are displayed in order of channel No.
For 2 channel digital display +2 channel bar graph display, the unit display is 3 digits.
No unit display for 3 channel digital display
*3 MAN: The same contents of AUTO for the specified channel are displayed.
*4 Display updated interval can be selected from AUTO / MAN.
AUTO: $1 \mathrm{~s} / 2 \mathrm{~s} / 3 \mathrm{~s} / 4 \mathrm{~s} / 5 \mathrm{~s}$
MAN: 2s (pen model), same as measurement interval (dot model)
*5 The display can be specified only for split display.
* 6 For computation channel display, the unit display is 2 digits

Power Supply

Rated Power Voltage:
100 to 240VAC, automatically selected depending on the power supply voltage
Usable power voltage ranges: 90 to 264VAC
Rated Power Frequency: $50 / 60 \mathrm{~Hz}$, automatically selected
Power Consumption:
(approx.)

	100VAC Power Source	240VAC Power Source	Maximum
1-4 pen	17VA*	$25 \mathrm{VA}^{*}$	55 VA
6-24 dot	$17 \mathrm{VA}^{*}$	$23 \mathrm{VA}^{*}$	55 VA

*: In Balance

Alarm

Number of alarm levels:
Up to four levels for each channel
Alarm types:
High and low, limits, differential high and low limits, high and low rate-of-change limits and delay high and low
Alarm delay time: 1 to 3600s
Interval time of rate-of-change alarms:
The measurement interval times 1 to 15
Display:
Alarm value is indicated as a point on the bar graph.

In occurring an alarm:

- On bar graph display, a point indicator is flashing.
- On digital display, an alarm type indicator is shown.
- A channel number of occurring alarm is displayed.
- Shared alarm display

Hysteresis:
0.0 to 1.0% (0.1% step) of recording span (only High, Low alarm, common for all channels and all levels).
Alarm indication when ALARM ACK-key is pressed: Non-hold-type:

Alarm display is not affected when the ALARM ACK-key is pressed.

Hold-type:

When alarm occurs, alarm indicator will start flashing. After ALARM ACK-key is pressed, indicator will show status of the alarm.

Measuring input terminal to ground: 1000 V AC ($50 / 60 \mathrm{~Hz}$), 1 min
Between measuring input terminals: 1000 V AC ($50 / 60 \mathrm{~Hz}$), 1 min
(except for RTD, since b-terminal is common). Between remote control terminal to ground: 500 V DC, 1 min .
Mechanical noise:
Machine Noise Information Ordinance 3. GSGV, Jan. 18, 1991:
The maximum sound pressure level is equal or less than 60dB (A) according to ISO7779.

Safety and EMC standards

CSA
CAN/CSA-C22.2 No.61010-1, CAN/CSA C22.2
No.61010-2-030, Overvoltage Category II or I ${ }^{+1}$,
Pollution Degree $2^{* 2}$, Measurement Category $\mathrm{II}^{* 3}$
UL
UL61010-1, UL61010-2-030 (CSA NRTL/C)
Overvoltage Category II or I" ${ }^{\text {" }}$, Pollution
Degree 2 ${ }^{* 2}$, Measurement Category III ${ }^{* 3}$
CE
EMC directive:
EN61326-1 Class A, Table 2
(For use in industrial locations) compliant
EN61000-3-2 compliant
EN61000-3-3 compliant
EN55011 Class A Group 1 compliant
Low voltage directive:
EN61010-1, EN61010-2-030 compliant,
Overvoltage Category II or I^{1+}, Pollution Degree 2 2^{2},
Measurement Category II^{+3}
RoHS directive:
"2011/65/EU+(EU)2015/863"(10-Substances)
compliant
WEEE Directive: Compliant
EMC Regulatory Arrangement in Australia and
New Zealand (RCM): EN55011 Class A; Group 1 compliant
KC marking: KN11, KN61000-6-2 compliant
*1 Overvoltage Category
Describes a number which defines a transient overvoltage condition. It implies the regulation for impulse withstand voltage. Applies to electrical equipment which is supplied from fixed installations like distribution boards.
II: Applied to standard power supply (100-240 VAC)
I: Applied to /P1 option (24 VDC/AC)
*2 Pollution Degree
Describes the degree to which a solid, liquid, or gas which deteriorates dielectric strength or surface resistivity is adhering.
"2" applies to normal indoor atmosphere.
Normally, only non-conductive pollution occurs.
*3 Measurement Category II (CAT II)
Applies to measuring circuits connected to low voltage installation, and electrical instruments supplied with power from fixed equipment such as electric switchboards.

```
Normal Operating Conditions
    Power voltage: }\quad90\mathrm{ to 132,180 to 264VAC
    Power frequency: }\quad50\textrm{Hz}\pm2%,60Hz \pm2
    Ambient temperature:0 to 50}\mp@subsup{}{}{\circ}\textrm{C
    Ambient humidity: }20\mathrm{ to 80% RH (at 5 to 40 ' C)
                30 to 50% RH (at 0 to 5,40
                to 50'C)
    Vibration: }\quad10\mathrm{ to }60\textrm{Hz},0.2\textrm{m}/\mp@subsup{\textrm{s}}{}{2}\mathrm{ or less
    Shock: Not acceptable
    Magnetic field: Less than 400A/m (DC and
        50,60Hz)
    Noise:
        Normal Mode (50 / 60Hz):
        DCV Peak value including signal must be
                less than }1.2\mathrm{ times the measuring
                range.
            TC Peak value including signal must be
                less than 1.2 times the measuring
                thermal electromotive force.
            RTD less than 50mV.
        Common Mode (50 / 60Hz):
            Less than 30VAC rms or 60VDC for the
            whole range
            Maximum noise voltage between channels
                (50 / 60Hz):
                250VAC rms or less for pen model and 6,12
                dot model
                200VAC rms or less for 18, 24 dot model
                *When /N2 (3 leg RTD) option is specified,
                200VAC rms or less for 6 dot,
                100VAC rms or less for 12, 18, and 24 dot model
```


Operating Position:

Frontwards: 0° Backwards: Within 30° from horizontal
Warm-up Time:
Min. 30 minutes after power has been turned ON.
Altitude: 2000 m or less

Standard Performance

Measuring and Recording Accuracy:
(Following specifications apply to operation of the recorder under standard operation conditions: temperature $23 \pm 2^{\circ} \mathrm{C}$, humidity $55 \pm 10 \% \mathrm{RH}$, power supply voltage 90 to $132 \mathrm{~V}, 180$ to 264 V AC, power supply frequency $50 / 60 \mathrm{~Hz} \pm 1 \%$, warm-up time at least 30 minutes, other ambient conditions like vibration should not adversely affect the recording operation).

Input	Range	Measuring (digital display)		Recording (analog)	
		Measurement Accuracy*	Max. Resolution	Recording Accuracy	Resolution
DC V	20 mV	$\pm(0.1 \%$ of rdg+2 digits)	10 $\mu \mathrm{V}$	\pm Measurement accuracy $\pm 0.3 \%$ of recording span	Pen model dead band: 0.2\% of recording span Dot printing model resolution: 0.1 mm
	60 mV		$10 \mu \mathrm{~V}$		
	200 mV		$100 \mu \mathrm{~V}$		
	2 V		1 mV		
	6 V		1 mV		
	20 V		10 mV		
	50 V	$\pm(0.1 \%$ of rdg+3 digits)	10 mV		
	1-5V	$\pm(0.1 \%$ of rdg+2 digits)	1 mV		
TC (excluding the accuracy of reference junction compensation)	R S B	$\pm\left(0.15 \%\right.$ of $\left.\mathrm{rdg}+1^{\circ} \mathrm{C}\right)$ but R, S : 0 to $100^{\circ} \mathrm{C}, \pm 3.7^{\circ} \mathrm{C}$ 100 to $300^{\circ} \mathrm{C}, \pm 1.5^{\circ} \mathrm{C}$ B : 400 to $600^{\circ} \mathrm{C}, \pm 2^{\circ} \mathrm{C}$, and is not guaranteed below $400^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	\pm Measurement accuracy $\pm 0.3 \%$ of recording span	Pen model dead band: 0.2% of recording span Dot printing model resolution: 0.1 mm
	K	$\begin{aligned} & \pm\left(0.15 \% \text { of } r d g+0.7^{\circ} \mathrm{C}\right) \\ & \text { but }-200 \text { to }-100^{\circ} \mathrm{C} \\ & \pm\left(0.15 \% \text { of } r d g+1^{\circ} \mathrm{C}\right) \end{aligned}$			
	E J T	$\begin{aligned} & \pm\left(0.15 \% \text { of rdg }+0.5^{\circ} \mathrm{C}\right) \\ & \text { but } \mathrm{J}:-200 \text { to }-100^{\circ} \mathrm{C} \\ & \pm\left(0.15 \% \text { of rdg }+0.7^{\circ} \mathrm{C}\right) \end{aligned}$			
	N	$\pm\left(0.15 \%\right.$ of rdg $\left.+0.7^{\circ} \mathrm{C}\right)$			
	W	$\pm\left(0.15 \%\right.$ of rdg+1 ${ }^{\circ} \mathrm{C}$)			
	L	$\begin{aligned} & \pm\left(0.15 \% \text { of rdg }+0.5^{\circ} \mathrm{C}\right) \\ & \text { but } \mathrm{L}:-200 \text { to }-100^{\circ} \mathrm{C} \\ & \pm\left(0.15 \% \text { of rdg }+0.7^{\circ} \mathrm{C}\right) \end{aligned}$			
	WRe	$\pm\left(0.2 \%\right.$ of rdg+1.0 ${ }^{\circ} \mathrm{C}$)			
RTD	$\begin{aligned} & \text { Pt100 } \\ & \text { JPt100 } \end{aligned}$	$\pm\left(0.15 \%\right.$ of rdg $\left.+0.3^{\circ} \mathrm{C}\right)$	$0.1{ }^{\circ} \mathrm{C}$	\pm Measurement accuracy $\pm 0.3 \%$ of recording span	Pen model dead band: 0.2% of recording span Dot printing model resolution: 0.1 mm

NOTE: Recording span is 180 mm .
Accuracy in case of scaling:
Accuracy during scaling (digits) =
measuring accuracy (digits) \times multiplier +2 digits
(rounded up)
Where the multiplier = scaling span digits /
recording span digits
Example:
DCV 6V range
recording span : 1.000 to 5.000 V
scaling span $\quad: 0.000$ to 2.000
measuring accuracy $= \pm(0.3 \% \times 5 \mathrm{~V}+2$ digits $)$
$\pm(0.015 \mathrm{~V}$ (15 digits) +2)
$\pm(17$ digits)
multiplier $=2000$ digits (0.000 to $2.000 / 4000$ digits
$(1.000$ to 5.000 V$)=0.5$
Accuracy during scaling $=17$ digits $\times 0.5+2=11$ digits (rounded up)
*including the measurement accuracy at linear scaling.
Maximum Allowable Input Voltage: \pm 10VDC (cont.) for 200mVDC ranges or less and TC, RTD, DI ranges
$\pm 60 \mathrm{VDC}$ (cont.) for 2VDC or more
Reference Junction Compensation: INT / EXT selectable (per channel)
Reference Junction Compensation Accuracy
(when measuring $0^{\circ} \mathrm{C}$ or up):
Type R, S, B, W, WRe: $\pm 1^{\circ} \mathrm{C}$
Type K, J, E, T, N, L, U: $\pm 0.5^{\circ} \mathrm{C}$
Input Resistance:
$10 \mathrm{M} \Omega$ or more (TC, $20 \mathrm{mV}, 60 \mathrm{mV}, 200 \mathrm{mV}$ range)
Approx. $1 \mathrm{M} \Omega$ (2 V range or more).
Input Source Resistance:
DCV, TC: $2 \mathrm{k} \Omega$ or less
RTD: 10Ω or less / wire (The resistance of all three wires must be equal)

Input Bias Current:
$10 n A$ or less (except when burnout is specified).
Maximum Common Mode Noise Voltage: 250VAC rms ($50 / 60 \mathrm{~Hz}$)
Maximum Differential Noise between Channels: 250 VAC rms ($50 / 60 \mathrm{~Hz}$) or less for pen model and 6,12 dot model
200VAC rms ($50 / 60 \mathrm{~Hz}$) or less for 18 , 24 dot model
*When /N2 (3 leg RTD) option is specified, 200VAC rms $(50 / 60 \mathrm{~Hz})$ or less for 6 dot, 100 VAC rms ($50 / 60 \mathrm{~Hz}$) or less for 12,18 , and 24 dot model
Interference between Channels:
120 dB (Input external resistance 500 2 , the deviation in the case that 60 V is applied to another channel)
Common Mode Rejection Ratio: $120 \mathrm{~dB}(50 / 60 \mathrm{~Hz} \pm 0.1 \%, 500 \Omega$ imbalance between '-' terminal and ground)
Normal Mode Rejection Ratio: $40 \mathrm{~dB}(50 / 60 \mathrm{~Hz} \pm 0.1 \%)$

Effect of Operating Conditions

Effect of Ambient Temperature: Effect of ambient temperature variation of $10^{\circ} \mathrm{C}$.

Digital display: Within \pm (0.1% of rdg +1 digit)
Recording: Within Digital display $\pm 0.2 \%$ of recording span (excluding RJC error)
Effect of Power Supply:
Effect of variation within 90 to 264VAC in rated power supply voltage:
(50 or 60 Hz)
Digital display:
Recording:
Within ± 1 digit
Within $\pm 0.1 \%$ of recording span
Effect of rated power frequency variation of $\pm 2 \mathrm{~Hz}$ (at 100VAC):

Digital display: Within \pm (0.1% of $r d g+1$
digit)

Recording: Same as digital display
Effect of Magnetic Field:
Effect of AC $(50 / 60 \mathrm{~Hz})$ or DC 400A/m field:
Digital display: Within \pm (0.1% of $r d g+10$ digits)
Recording: Less than $\pm 0.5 \%$ of recording span
Effect of Input Source Resistance:
Effect of Input Source Resistance variation of $+1 \mathrm{k} \Omega$: DCV range:

200 mV or lower range: \quad Within $\pm 10 \mu \mathrm{~V}$
2 V or higher range: Within -0.1% of rdg

TC range:

Within $\pm 10 \mu \mathrm{~V}$
RTD range:

- Effect of 10Ω per wire (resistances of three wires must be equal):
Digital display: Within \pm (0.1% of rdg +1 digit) Recording: Within Digital display $\pm 0.1 \%$ of recording span
- Effect of difference of three wires:

Digital display: $0.1^{\circ} \mathrm{C}$ per $40 \mathrm{~m} \Omega$ (approx.) for Pt100 range.
Effect of Operating Position:
Digital display: Within \pm (0.1% of rdg +1 digit) (within 30° backwards)
Recording: Within Digital display $\pm 0.1 \%$ of recording span (within 30° backwards)
Vibration:
Effect when sine-wave motion of frequency 10 to
60 Hz and acceleration of $0.2 \mathrm{~m} / \mathrm{s}^{2}$ is applied to the instrument in the direction of three axes for two hours:
Digital display: Within \pm (0.1% of rdg+1 digit)
Recording: Within Digital display $\pm 0.1 \%$ of recording span

Transport and Storage Conditions

No malfunction will occur under these conditions, however when returning to normal operation conditions, calibration might be necessary.
Temperature: $-25^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
Humidity: $\quad 5$ to 95% RH (no condensation)
Vibration: $\quad 10$ to $60 \mathrm{~Hz}, 4.9 \mathrm{~m} / \mathrm{s}^{2}$
Shock: $\quad 392 \mathrm{~m} / \mathrm{s}^{2}$ or less (while being packed)

- OPTIONAL SPECIFICATIONS

IA1: Alarm Output Relay (2 contacts)
IA2: Alarm Output Relay (4 contacts)
IA3: Alarm Output Relay (6 contacts)
IA4: Alarm Output Relay (12 contacts)
IA5: Alarm Output Relay (24 contacts)
When alarm occurs, output relay on rear terminal will be activated.

- AND / OR selectable.
- Energized/ deenergized selectable (common for all relays).
- Hold type/ non-hold type selectable (common for all relays).
- Reflash relay:

Alarms can be assigned to an output relay (101-I03)

- Relay contact rating: DC $250 \mathrm{~V} / 0.1 \mathrm{~A}$

AC $250 \mathrm{~V} / 3 \mathrm{~A}$

- Type of relay output: NO-C-NC

Note : Alarm ACK key:
Non-Hold type:
No effect when ALARM ACK-key is pressed (no effect on output relay).
Hold type:
When ALARM ACK-key is pressed, the output relay will be reset.

(ex. 2)
F03.ai
/C3: RS-422A / 485 Communication Interface By using this communication function, setting and control of data can be done by a host-computer.
Data can also be output to the host-computer.

- Synchronization method:
start-stop asynchronous transmission
- Specifications:

Conform to EIA RS-422A / 485 standard

- Protocols:

YOKOGAWA private protocol, Modbus protocol

- Communication method:

4-wire half-duplex multi-drop connection
(1: $\mathrm{N}(\mathrm{N}=1$ to 32$)$)

- Transfer rate:

1200, 2400, 4800, 9600, 19200, 38400bps

- Data length: 7 or 8 bit
- Stop bit: 1 bit
- Parity: Odd, even or none
- Communication distance: Up to 1.2 km
- Communication mode:

ASCII (control / setting / measured data) or Binary (measured data)
Modbus: RTU SLAVE

IC7: Ethernet Interface

Electrical and mechanical specifications: Conforms to IEEE 802.3
Transmission media: 10 Base-T
Protocol: TCP, IP, UDP, ICMP, ARP

/H2: Clamped Input Terminal

Using clamped input terminals as input terminal.

/H3: Non-glare Door Glass

Provides non-reflective glass in the front door.

/H5[]: Portable Type

Provides carrying handle and power code. (cable length: approx. $2 \mathrm{~m}, 3$ pin plug)

/M1: Mathematical Functions

- Computation channel recording

Pen model: Measurement and computation
channel can be assigned to 1-4pen.
Dot model: ON/OFF selectable for each channel
Zone recording
Partial expanded recording

- Alarm for computation channel Number of levels: Up to four levels for every channel (High and low limits, delay High and low)
- Number of computation channel: 8 (pen model)

24 (dot model)

- Computation expression: Up to 120 characters can be used
- Types:

Four arithmetic operations, square root, absolute, common logarithm, exponential, power, relational operations ($>, \geq,<, \leq,=, \neq$), logic operations (AND, OR, NOT, XOR)

- Constant*: Up to 30 constants can be used
- Number of communication digital input*:

Pen model: 8
Dot model: 24

- Remote input*:Up to 5 remote inputs status(I/O)
can be used in computation expression
* It cannot be used in statistical computation expression.

Statistical computation The following computation can be executed for the specified internal timer

- Types of statistics: MAX, MIN, AVE, SUM, MAXMIN (Totalization)
- Type of interval timer: 3 type

Timer types: Interval of periodic printout, absolute time, relative time

/N1: Cu10, Cu25 RTD input

This option allows Cu10 and Cu25 RTD inputs to be added to the standard input types.

Cu10, Cu25 Measurement Range		
	Input Type	Measurement Range
RTD	Cu10(GE) Cu10(L\&N) Cu10(WEED) Cu10(BAILEY) Cu10: $\alpha=0.00392$ at $20^{\circ} \mathrm{C}$ Cu10 : $\alpha=0.00393$ at $20^{\circ} \mathrm{C}$ Cu25*: $\alpha=0.00425$ at $0^{\circ} \mathrm{C}$	$\begin{aligned} & -200.0 \text { to } 300.0^{\circ} \mathrm{C} \\ & \left(-328.0 \text { to } 572.0^{\circ} \mathrm{F}\right) \end{aligned}$

* Measuring current $\mathrm{i}=1 \mathrm{~mA}$

Input Type	Measurement Accuracy	Recording Accuracy
Cu10(GE)		\pm Measurement accuracy $\pm 0.3 \%$ of recording span
Cu10(L\&N)		
Cu10(WEED)	\pm (0.4\% of rdg	
Cu10(BAILEY)	$+1.0^{\circ} \mathrm{C}$)	
Cu10 : $\alpha=0.00392$ at $20^{\circ} \mathrm{C}$		
Cu10: $\alpha=0.00393$ at $20^{\circ} \mathrm{C}$		
Cu25 : $\alpha=0.00425$ at $0^{\circ} \mathrm{C}$	$\begin{aligned} & \pm(0.3 \% \text { of } \mathrm{rdg} \\ & \left.+0.8^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	

/N2: 3 Leg Isolated RTD Input
A, B, b legs are isolated input type

/N3: Expansion Inputs

This option allows 14 types inputs such as Pt50, PR40-20, PLATINEL inputs to be supported besides the standard input types.
/N3 Measurement Range

Input		Measuring Range	
TC (Excluding RJC accuracy)	PR40-20	0.0 to $1900.0^{\circ} \mathrm{C}$	32 to $3452^{\circ} \mathrm{F}$
	PLATINEL	0.0 to $1400.0^{\circ} \mathrm{C}$	32 to $2552^{\circ} \mathrm{F}$
	NiNiMo	0.0 to $1310.0^{\circ} \mathrm{C}$	32 to $2390^{\circ} \mathrm{F}$
	W/WRe26	0.0 to $2400.0^{\circ} \mathrm{C}$	32 to $4352^{\circ} \mathrm{F}$
	$\begin{gathered} \hline \text { Type N } \\ \text { (AWG14) } \\ \hline \end{gathered}$	0.0 to $1300.0^{\circ} \mathrm{C}$	32 to $2372{ }^{\circ} \mathrm{F}$
	Kp vs Au7Fe	0.0 to 300.0K	-
RTD (Measuring contact $\mathrm{i}=1 \mathrm{~mA}$)	Pt25	-200.0 to $550.0^{\circ} \mathrm{C}$	-328.0 to $1022.0^{\circ} \mathrm{F}$
	Pt50	-200.0 to $600.0^{\circ} \mathrm{C}$	-328.0 to $1112.0^{\circ} \mathrm{F}$
	Ni100(SAMA)	-200.0 to $250.0^{\circ} \mathrm{C}$	-328.0 to $482.0^{\circ} \mathrm{F}$
	Ni100(DIN)	-60.0 to $180.0^{\circ} \mathrm{C}$	-76.0 to $356.0^{\circ} \mathrm{F}$
	Ni120	-70.0 to $200.0^{\circ} \mathrm{C}$	-94.0 to $392.0^{\circ} \mathrm{F}$
	J263*B	0.0 to 300.0 K	-
	Cu53	-50.0 to $150.0^{\circ} \mathrm{C}$	-58.0 to $302.0^{\circ} \mathrm{F}$
	Cu100*1	-50.0 to $150.0^{\circ} \mathrm{C}$	-58.0 to $302.0^{\circ} \mathrm{F}$

*1: Cu100: $\alpha=0.00425$ at $0^{\circ} \mathrm{C}$
Following specifications apply to operation of the recorder under standard operation conditions: temperature $23 \pm 2^{\circ} \mathrm{C}$, humidity $55 \pm 10 \% \mathrm{RH}$, power supply voltage 90 to $132 \mathrm{~V}, 180$ to 264 V AC , power supply frequency $50 / 60 \mathrm{~Hz} \pm 1 \%$, warm-up time at least 30 minutes, other ambient conditions like vibration should not adversely affect the recording operation
Reference junction compensation accuracy
When the input terminal temperature is balanced (at least 60 minutes after power-on)
PLATINEL, NiNiMo, W/WRe26, Type N (AWG14): $\pm 1.0^{\circ} \mathrm{C}$
PR40-20, KpvsAu7Fe: Without reference junction compensation (fixed at $0^{\circ} \mathrm{C}$)

Input		Measuring Accuracy	Recording Accuracy
PR40-20*1	$\begin{array}{r} 0 \text { to } 450^{\circ} \mathrm{C} \\ 450 \text { to } 750^{\circ} \mathrm{C} \\ 750 \text { to } 1100^{\circ} \mathrm{C} \\ 1100 \text { to } 1900^{\circ} \mathrm{C} \end{array}$	Not guaranteed $\pm\left(0.9 \%\right.$ of $\left.\mathrm{rdg}+3.2^{\circ} \mathrm{C}\right)$ $\pm\left(0.9 \%\right.$ of $\left.r d g+1.3^{\circ} \mathrm{C}\right)$ $\pm\left(0.9 \%\right.$ of $\left.r d g+0.4^{\circ} \mathrm{C}\right)$	
PLATINEL		$\begin{aligned} & \pm(0.25 \% \text { of } \\ & \left.\mathrm{rdg}+2.3^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	
NiNiMo		$\begin{aligned} & \pm(0.25 \% \text { of } \\ & \text { rdg } \left.+0.7^{\circ} \mathrm{C}\right) \end{aligned}$	
W/WRe26	$\begin{array}{r} 0 \text { to } 400^{\circ} \mathrm{C} \\ 400 \text { to } 2400^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & \text { within } \pm 15.0^{\circ} \mathrm{C} \\ & \pm\left(0.2 \% \text { of } \mathrm{dg}+2.0^{\circ} \mathrm{C}\right) \end{aligned}$	
Type N (AWG14)		$\begin{aligned} & \pm(0.2 \% \text { of } \\ & \text { rdg } \left.+1.3^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	\pm Measurement
Kp vs Au7Fe	$\begin{array}{r} 0 \text { to } 20 \mathrm{~K} \\ 20 \text { to } 300 \mathrm{~K} \end{array}$	$\begin{aligned} & \pm 4.5 \mathrm{~K} \\ & \pm 2.5 \mathrm{~K} \end{aligned}$	accuracy $\pm 0.3 \%$ of
Pt25		$\begin{aligned} & \pm(0.15 \% \text { of } \\ & \text { rdg } \left.+0.6^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	recording span
Pt50		$\begin{array}{\|l} \hline \pm(0.3 \% \\ \left.\mathrm{rdg}+0.6^{\circ} \mathrm{C}\right) \\ \hline \end{array}$	
$\begin{aligned} & \hline \text { Ni100(SAMA) } \\ & \text { Ni100(DIN) } \\ & \text { Ni120 } \\ & \hline \end{aligned}$		$\begin{aligned} & \pm(0.15 \% \text { of } \\ & \left.\mathrm{rdg}+0.4^{\circ} \mathrm{C}\right) \end{aligned}$	
J263*B	$\begin{array}{r} \hline 0 \text { to } 40 \mathrm{~K} \\ 40 \text { to } 300 \mathrm{~K} \end{array}$	$\begin{aligned} & \pm 3.0 \mathrm{~K} \\ & \pm 1.0 \mathrm{~K} \end{aligned}$	
Cu53		$\begin{aligned} & \pm(0.15 \% \text { of } \\ & \left.\mathrm{rdg}+0.8^{\circ} \mathrm{C}\right) \end{aligned}$	
Cu100		$\begin{aligned} & \pm(0.2 \% \text { of } \\ & \left.\mathrm{rdg}+1.0^{\circ} \mathrm{C}\right) \end{aligned}$	

*1: PR40-20 : No reference junction compensation ($0^{\circ} \mathrm{C}$ fix)

/P1 : 24VDC/AC Power Supply

Rated power supply: 24VDC/AC
Allowable power supply voltage range:
21.6 to 26.4 VDC/AC

Dielectric strength:
Power supply to ground terminal: 1000VAC
Power Consumption:
(approx.)

Supply Voltage	$\mathbf{1 - 4}$ pen	$\mathbf{6}$ dot	Max.
24 VDC	$9 \mathrm{VA}^{*}$	$10 \mathrm{VA}^{*}$	35 VA
$24 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$	$17 \mathrm{VA}^{*}$	$18 \mathrm{VA}^{*}$	45 VA

* In Balance

/R1: Remote Control

5 are selectable from the below mentioned remote controls.

Number of settings	Signal
Recording start / stop	edge
Chart speed change	level
Message printout start*1 5	trigger
Manual printout start 1	trigger
Alarm ACK 1	trigger
Time adjustment	trigger
(Adjusting the time to a preset time)	
Computation start / stop*2	edge
Computation reset*2	trigger
Batch comment switch*3	level
Priorty remote recording*3	level
Data save On/Off	level
*1 Up to 5 messages can be set	
*2 /M1 option is necessary	
*3 Available for the model with /BT1 option	

Input type: Isolated from the main circuit through a photocoupler, built-in isolated power supply for the input terminals, and shared common.

Input type and signal level:
Voltage-free contact
Contact close at 200Ω or less and contact open at $100 \mathrm{k} \Omega$ or graeter.
Open collector
ON voltage: 0.5 V or less (sink current 30 mA or more), leakage current when OFF: 0.25 mA or less
Allowable input voltage: 5 VDC
Singnal type: edge, Level, or trigger (250 ms or more)

/CC1: Calibration correction

Corrects the mesurement value of each channel using segment linearizer approximation.
Number of segment points: 2 to 16
Setting method: Bias, Abolute value
Target Channel: Measurement channel
Target range:
Input range (DCV, TC, RTD)
Linear scaling range (DCV, TC, RTD, 1-5V)
But, DI, Differentioal computation and square root are not included.
/BT1: Header printout
Batch name, comment, time, chart speed are printed in record Start/Stop.
Message printout including measured value/ computation value is available.
The pen offset compensating data can be ejected after recording stops.

- Printout contents:

Batch name: Batch number-Lot number (ON/OFF selectable)
Batch number: Up to 26 characters can be set Lot number: 4 digits/ 6 digits/OFF selectable
Start/Stop comment:
Up to 64 characters $\times 5$ lines can be set
Start/Stop time: ON/OFF selectable
Start/Stop chart speed: ON/OFF selectable

- Message printout:

Printout contents
(message format: ON/OFF selectable)
ON: any (date/time, message (up to 16
characters), measured value) can be
selected (up to 69 characters)
OFF: Date/time + message (up to 16 characters)
IEM1: SD Memory Card
SD memory cards can be used as external storage media.
Measured data can be saved (The μ R20000 does not support FIFO function (overwrite function)) and replayed (only for dot model), and setting parameters can be saved and loaded.
Media: SD card (SD/SDHC) (up to 32 GB)
Format: FAT32 or FAT16
Note: /EM1 modofication is not available.

■ APPLICATION SOFTWARE

With Ethernet (/C7), RS-422A/485 (/C3), or Interface unit, μ R20000 setting can be configured.

- RXA10 Configuration Software*

System requirements
OS: \quad Windows 7 Home Premium, SP1 (32bit and 64-bit editions) / Windows 7 Professional, SP1 (32-bit and 64-bit editions), Windows 8.1 Update (32-bit and 64-bit editions, desktop mode), Windows 8.1 Pro Update (32-bit and 64bit editions, desktop mode) / Windows 10 Home (32-bit and 64-bit editions) / Windows 10 Pro (32-bit and 64-bit editions)
Yokogawa will also stop supporting OSs that Microsoft Corporation no longer supports.
Processor:
CPU: OS compatible
Memory: Enough space to load the application
Hard disk: Enough space to store the installation files
CD-ROM drive: A CD-ROM drive supported by the OS.
Mouse: A mouse supported by the OS.
Monitor:
OS compatible display
1024×768 dots or higher, 65536 colors or more
recommended
Main functions (as a package):
Configuration software:
Configuration via communication: Configures the station, excluding the communication setting, or sets it in set mode.

* Note This software applies for μ R20000 from R2. 01 version.
- Interface unit (attached with RXA10 configuration software)
Method of power supply: Power supply from μ R20000
Connector type: D-Sub 9-pin plug (male)
Electrical and mechanical specifications: Conforms to EIA-574 (9-pin EIA-232 (RS232))
RS422A/485 communication interface (/C3) and interface unit cannot work together.
- Universal Viewer (free download)

Data files saved on the SD memory card can be loaded and displayed. For specified data, you can also perform statistical computation over an area and export to ASCII, Excel, or other formats.
http://www.yokogawa.com/ns/
Displaying waveforms with the Viewer

For the RoHS (2011/65/EU+(EU)2015/863) directive, please refer to the General Specifications "List of EU RoHS Directive (2011/65/EU+(EU)2015/863) Compliant Recorder and Controller Products (GS 04A01A0102EN)".

STANDARD ACCESSORIES

Name		1 pen	2 pen	3 pen	4 pen	6, 12, 18, 24 dot
Z-fold chart		1	1	1	1	1
6 color ribbon cassette		-	-	-	-	1
Disposable felt-pen cartridge	Red	1	1	1	1	-
	Green	-	1	1	1	-
	Blue	-	-	1	1	-
	Violet	-	-	-	1	-
Plotter pen	Purple	1	1	1	1	-
SD memory card (1GB) (In case /EM1 is specified)		1	1	1	1	1
Mounting brackets		2	2	2	2	2
Operation Manual		1	1	1	1	1

The electronic manual (CD, part no. B8800LZ) is available for purchase. Please contact your nearest YOKOGAWA dealer for details.

SPARES/OPTIONAL ACCESSORIES

Name		Model Code (Parts No.)	Specification
Z-fold chart		B9573AN	10 (sales unit)
6 color ribbon cassette		B9906JA	1 (sales unit)
Disposable feltpen cartridge	Red	B9902AM	1 (sales unit, 3 pieces/unit)
	Green	B9902AN	1 (sales unit, 3 pieces/unit)
	Blue	B9902AP	1 (sales unit, 3 pieces/unit)
	Violet	B9902AQ	1 (sales unit, 3 pieces/unit)
Plotter pen	Purple	B9902AR	1 (sales unit, 3 pieces/unit)
SD memory card (1GB)		773001	1 (sales unit)
Mounting brackets		B9900BX	2 (sales unit)
Shunt resistor	(for screw input terminal)	415920	$250 \Omega \pm 0.1 \%$
		415921	$100 \Omega \pm 0.1 \%$
		415922	$10 \Omega \pm 0.1 \%$
	(for clamped input terminal)	438920	$250 \Omega \pm 0.1 \%$
		438921	$100 \Omega \pm 0.1 \%$
		438922	$10 \Omega \pm 0.1 \%$

Basic Conditions and Individual Contracts at the Time of Purchase

The warranty for this product is defined in the basic conditions and individual contracts at the time of purchase.
The individual conditions are as follows.

- Validation

Yokogawa does not guarantee the final outcome of validation work even if there is a defect in the product.
For the warranty of validation services, please contact the company that performed the validation work.

- Warranty period of firmware

The firmware warranty period is one year.

- Microsoft, MS and Windows are registered trademarks of Microsoft Corporation USA.
- Pentium are registered trademarks of Intel Corporation.
- Modbus is a registered trademark of AEG Schneider
- Other company and/or product names are registered trade mark of their manufactures.

REAR TERMINAL ARRANGEMENTS

Option Terminals

/A4 /C3 /R1 Combination

NO	C	NC	1		NO	C		NC
NO	C	NC	2	12	NO	C		NC
NO	C	NC	3	13	NO	C		NC
NO	C	NC	4	\{ 14	NO	C		NC
NO	C	NC	5	15	NO	C		NC
NO	C	NC	6	- 16	NO	C		N
(1)	(2)	(3)		Remote Control				
(4)	(5)	(C)						
$\begin{array}{\|l\|} \hline \text { SD } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { SD } \\ \hline \end{array}$	SG						
$\begin{array}{\|l\|} \hline R D \\ A \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{RD} \\ \hline \mathrm{~B} \end{array}$	FG						

IA4

$\left\{\begin{array}{|l|l|l|l|l|}\hline \mathrm{NO} & \mathrm{C} & \mathrm{NC} & 1 \\ \hline \mathrm{NO} & \mathrm{C} & \mathrm{NC} & 2 \\ \hline \mathrm{NO} & \mathrm{C} & \mathrm{NC} & 3 \\ \hline \mathrm{NO} & \mathrm{C} & \mathrm{NC} & 4 \\ \hline \mathrm{NO} & \mathrm{C} & \mathrm{NC} & 5 \\ \hline \mathrm{NO} & \mathrm{C} & \mathrm{NC} & 6 \\ \hline & & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline\end{array}\right.$

| 21 | NO | C | NC | 31 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 22 | NO | C | NC | 32 |
| 23 | NO | C | NC | 33 |
| 24 | 32 | | | |
| 24 | NO | C | NC | 34 |
| 25 | NO | C | NC | 35 |
| 26 | NO | C | NC | 36 |
| | 36 | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |

F05.ai

NOTE: Compatibility with Input Terminals and Option Terminals of Older Models
The input and option terminals of this instrument are specific to this instrument. Do not connect to the input terminals or option terminals of the μ R1800, or other models as malfunction can result.

DIMENSION

Unit : mm
(approx. inch)

$\underline{\text { Panel Cutout \& Spacing }}$

(0.94)

Note) The μ R20000 should be mounted by only two brackets, either on the top \& bottom of the recorder, or on the left \& right side of the recorder. If not specified, the tolerance is $\pm 3 \%$. However, in cases of less than 10 mm , the tolerance is $\pm 0.3 \mathrm{~mm}$.

DIMENSION (Portable Type)

Note: mahe sure to use the appropriate power cord, matching the power outlet.
If not specified, the tolerance is $\pm 3 \%$. However, in cases of less than 10 mm , the tolerance is $\pm 0.3 \mathrm{~mm}$.

NOTE: Compatibility with Input Terminals and Option Terminals of Older Models
The input and option terminals of this instrument are specific to this instrument. Do not connect to the input terminals or option terminals of the μ R1800, or other models as malfunction can result.

